- Ceilling diffusers A1 : A4

(:) www.airtechnic.gr
www.facebook.com/Airtechnic.gr
www.instagram.com/airtechnic.chatzoudis

Ceiling diffusers $A 1-\Delta$

Ceiling diffusers $\mathrm{A} 1 \div \mathrm{A} 4$ have fixed blades configured for air supply into $1 \div 4$ directions. They are suitable for air supply in air-conditioning and ventilation systems and ceiling or air duct installation.

Ceiling diffusers $\mathbf{A 1} \div \mathbf{A} 4$ can be manufactured from anodized aluminium or aluminium painted in RAL color:
$\mathrm{A} 1 \div \mathrm{A} 4 \ldots$: Blades \& frame from anodized aluminium or aluminium painted in RAL color.
They can be installed in spaces with height up to 4 m and they are ideal for systems with variable flow rate as the configuration of the blades achieves steady stream morphology at high velocities, eliminating the risk of flow detachment from the ceiling in case of low air supply. The ability to achieve airflow with high velocities makes the grilles $\mathbf{A} 1 \div \mathbf{A} 4$ suitable for installation in spaces with large temperature difference between the air within the space and the supplied air.

CEILING DIFFUSERS A1 ~A4 SIZE SELECTION

The selection of ceiling diffusers $\mathbf{A 1} \div \mathbf{A} 4$ will be made using the following diagrams and in accordance with the guideline CR 1752:1998 (Ventilation for buildings - Design criteria for the indoor environment).

With volume damper

With equalizing grid and volume damper

Upon request ceiling diffusers A1 \div A4 may have volume damper, air supply equalizing grid, can be manufactured as accessible ceiling diffusers with removable blade core or can be installed in a false ceiling plate 595 $\times 595 \mathrm{~mm}$.

Diffuser lenght	\mathbf{L}	$[\mathrm{mm}]$
Diffuser height	\mathbf{H}	$[\mathrm{mm}]$
Diffuser surface factor	$\mathbf{A f}$	
Pressure drop inside the diffuser	$\mathbf{\Delta P}$	$[\mathrm{Pa}]$
Maximum air velocity inside the diffuser	$\mathbf{U}_{\mathbf{o}}$	$[\mathrm{m} / \mathrm{s}]$
Noise level	$\mathbf{\Theta}$	$\mathrm{dB}[\mathrm{A}]$
Temperature difference Supply / Room	$\mathbf{\Delta T}$	${ }^{\circ} \mathrm{C}$
Horizontal stream range	$\mathbf{X}_{\mathbf{o}}$	$[\mathrm{m}]$
Horizontal stream vertical drop	$\mathbf{Y}_{\mathbf{o}}$	$[\mathrm{m}]$
Horizontal stream velocity at distance X	$\mathbf{U}_{\mathbf{T}}$	$[\mathrm{m} / \mathrm{s}]$
Horizontal air-stream temperature	$\mathbf{T}_{\mathbf{T}}$	${ }^{\circ} \mathrm{C}$
Distance between diffuser and point of stream collision	$\mathbf{A}_{\mathbf{s}}$	$[\mathrm{m}]$

CEILING DIFFUSERS A1 ~ A4 TYPES

A1 From aluminium. Fixed blades configured for air supply into 1 direction.
From aluminium. Fixed blades configured for air supply into 1 direction.
From aluminium. Fixed blades configured for air supply into $\mathbf{2}$ directions. From aluminium. Fixed blades configured for air supply into 3 directions. From aluminium. Fixed blades configured for air supply into 4 directions. From aluminium. Diffusers $A 1 \div A 4$ with volume damper. From aluminium. Diffusers $A 1 \div A 4$ with equalizing grid. From aluminium. Diffusers $\mathrm{A} 1 \div \mathrm{A} 4$ with volume damper and equalizing grid.

CEILING DIFFUSERS A1 \div A4 INSTALLATION

1. Visible installation with screws

For easy, fast and safe installation. The number of screws needed is proportional to the size of the diffuser. In case the diffuser is very large, can be provided fragmented according to the requirements.
2. Concealed placement with internal screws, on the side of the diffuser
For an aesthetically better result and a secure installation. The diffuser is held in the hole with internal screws on the sides of the diffuser. The screws are accessible through the opening face of the diffuser.

AIR SUPPLY

CEILING DIFFUSERS A1 ~ A4 PLACEMENT

All diffusers can be powder painted in any RAL color, upon request.
For the full range of RAL colors please contact us.

AIR DISCHARGE OPTIONS

> Horizontal discharge to 1 direction and stream collision with wall

Horizontal discharge to 1 direction and collision between streams

PRESSURE DROP \& NOISE LEVEL CALCULATION

Selection example 1 :
Which is the pressure drop and the produced noise level in a diffuser A2 (2 directions) $300 \times 300 \mathrm{~mm}$, if the air flow is $400 \mathrm{~m}^{3} / \mathrm{h}$; From the surface factor Af selection table, we establish that according to the diffuser's dimensions the surface factor Af is equal to 90 . From diagram 1.1, for air flow of $400 \mathrm{~m}^{3} / \mathrm{h}$ and surface factor 90 , we estimate that the maximum air velocity inside the diffuser is $2,6 \mathrm{~m} / \mathrm{s}$, while from diagram 1.2 we estimate that the produced noise is $27,4 \mathrm{~dB}(\mathrm{~A})$. Simiral, from diagram 3 (A2), for air flow of $400 \mathrm{~m}^{3} / \mathrm{h}$ and surface factor 90 , we estimate that the pressure drop is equal to $29,3 \mathrm{~Pa}$.

- NOTE :

The produced noise level and the velocity inside the diffuser are calculated using the following diagrams 1.2 and 1.1 respectively, which are the same for all types of A1 \div A4 diffusers. The calculation of the pressure drop, however, depends upon the type of the diffuser (A1, A2, $\mathrm{A} 3, \mathrm{~A} 4$) and is done using the following diagrams $2 \div 5$ respectively (page $6 \div 7$).

SURFACE FACTOR SELECTION TABLE									
	150	230	300	380	450	530	610	700	800
150	22,5	34,5	45,0	57,0	67,5	79,5	91,5	105,0	120,0
230	34,5	52,9	69,0 \downarrow	87,4	103,5	121,9	140,3	161,0	184,0
300	45,0	69,0	90,0	114,0	135,0	159,0	183,0	210,0	240,0
380	57,0	87,4	114,0	144,4	171,0	201,4	231,8	266,0	304,0
450	67,5	103,5	135,0	171,0	202,5	238,5	274,5	315,0	360,0
530	79,5	121,9	159,0	201,4	238,5	280,9	323,3	371,0	424,0
610	91,5	140,3	183,0	231,8	274,5	323,3	372,1	427,0	488,0
700	105,0	161,0	210,0	266,0	315,0	371,0	427,0	490,0	560,0
800	120,0	184,0	240,0	304,0	360,0	424,0	488,0	560,0	640,0

The diagrams are an approximate selection method for A1 \div A 4 diffusers. For more precise calculation, please use the AIRTECHNIC air grilles calculation software or contact us.

DIFFUSER'S PRESSURE DROP \& NOISE LEVEL

Calculation example 1 :

Pressure drop and noise level calculation in a diffuser A3 + Damper with blade angle of 15°
We have a diffuser A3 + Damper with dimensions 450×450 and air flow of $800 \mathrm{~m}^{3} / \mathrm{h}$. A diffuser A3 with dimensions 450×450, has, according to diagram 4 (page 7), for air flow equal to $800 \mathrm{~m}^{3} / \mathrm{h}$, pressure drop equal to $11,8 \mathrm{~Pa}$ and according to diagram 1 (page 5), produces noise level of $24,2 \mathrm{~dB}$. A damper with dimensions 450×450 has, according it's respective selection diagrams, for blade angle of 15° and air flow of $800 \mathrm{~m}^{3} / \mathrm{h}$, pressure drop equal to $5,6 \mathrm{~Pa}$ and produces noise equal to $10,2 \mathrm{~dB}$.

The total pressure drop inside the diffuser A3 + Damper with dimensions 450×450 is the algebraic sum of the pressure drop inside the diffuser and the pressure drop inside the damper: $\Delta p_{A 3}+\Delta p$ \qquad $=11,8+5,6=17,4 \mathrm{~Pa}$.

The total noise level is calculated by using the following equation: $L_{\text {tot }}=L_{A 3} \oplus L_{\text {Damper }}=L m a x+C(\Delta L)$. The difference between the noise levels of the 2 independent sound sources (the diffuser A 3 and the damper) is $\Delta \mathrm{L}=14 \mathrm{~dB}$. Therefore from the following diagram we determine that for $\Delta \mathrm{L}=14 \mathrm{~dB}$ the correction factor $\mathrm{C}(\Delta \mathrm{L})$ is equal to 0,1 . So, the total noise level is $L_{\text {tot }}=\operatorname{Lmax}+C(\Delta L)=24,2+0,1=\mathbf{2 4 , 3} \mathbf{d B}$.

Calculation example 2 :
Pressure drop and noise level calculation in a diffuser A1 + Damper with blade angle of 45°
We have a diffuser A1 + Damper with dimensions 450×450 and air flow of $1.000 \mathrm{~m}^{3} / \mathrm{h}$. The diffuser A1 with dimensions 450×450 has, according to diagram 2 (page 6), for air flow equal to $1.000 \mathrm{~m}^{3} / \mathrm{h}$, pressure drop equal to $17,8 \mathrm{~Pa}$ and according to diagram 1 (page 5), produces noise level of $30,2 \mathrm{~dB}$. A damper with dimensions 450×450 has, according it's respective selection diagrams, for blade angle of 45° and air flow of $1000 \mathrm{~m}^{3} / \mathrm{h}$, pressure drop equal to 59,4 Pa and produces noise equal to $40,5 \mathrm{~dB}$.

The total pressure drop inside the diffuser A1 + Damper with dimensions 450×450 is the algebraic sum of the pressure drop inside the diffuser and the pressure drop inside the damper: $\Delta p_{A 1}+\Delta p_{\text {Damper }}=17,8+59,4=77,2$ Pa.

The total noise level is calculated by using the following equation: $L_{\text {tot }}=L_{A 1} \oplus L_{\text {Damper }}=L \max +C(\Delta L)$. The difference between the noise levels of the 2 independent sound sources (the diffuser $A 1$ and the damper) is $\Delta L=10,3 \mathrm{~dB}$. From the following diagram we determine that for $\Delta \mathrm{L}=10,3 \mathrm{~dB}$ the correction factor $\mathrm{C}(\Delta \mathrm{L})$ is equal to 0,38 . So, the total noise level is $L_{\text {tot }}=\operatorname{Lmax}+C(\Delta L)=40,5+0,38=40,88 \mathrm{~dB}$.

CALCULATING THE TOTAL NOISE LEVEL BETWEEN 2 INDEPENDENT SOUND SOURCES

Since noise in $[\mathrm{dB}]$ is a quantity that is defined in logarithmic scale, when we have 2 (or more) independent sound sources, the total noise is not calculated by the algebraic sum of the 2 sources. The "sum" of 2 sound sources L1, L2 is symbolized by the internationaly defined symbol \oplus and is calculated by using the following equation :
$L_{\text {tot }}=\mathrm{L} 1 \oplus \mathrm{~L} 2=10 \times \log \left(10^{0,1 \times \mathrm{L} 1}+10^{0,1 \times \mathrm{L} 2}\right)$
Because of the previous equation requiring some complex calculations, we can define the sum of 2 sound sources with sufficient accuracy using the following approximate equation :
$\mathrm{L}_{\text {tot }}=\mathrm{L} 1 \oplus \mathrm{~L} 2=\mathrm{Lmax}+\mathrm{C}(\Delta \mathrm{L})$,
where Lmax is the largest noise level between L 1 and $L 2$ and $C(\Delta L)$ a correction factor (in $d B$) which depends on the difference ΔL $=|\mathrm{L} 2-\mathrm{L} 1|$ and is calculated by using the following diagram.

RANGE CALCULATION - A1

Selection example 2 :
Which is the total range of a diffuser A1 with dimensions 300×300, if the air flow is $300 \mathrm{~m}^{3} / \mathrm{h}$, we have collision between the air stream of this diffuser and the air stream of another's, at a distance of 1 m from each diffuser and the stream velocity at total range is $0,2 \mathrm{~m} / \mathrm{s}$?

From the surface factor Af selection table (page 5) we establish that, for a diffuser with dimensions $\mathbf{3 0 0} \mathbf{x} \mathbf{3 0 0}$, the surface factor Af is equal to 90 . Therefore, from diagram 6.1, for air flow of $300 \mathrm{~m}^{3} / \mathrm{h}$ and surface factor $A f=90$, we determine the factor $S_{1}=1,74$. We continue to diagram 6.2 , where, for factor $S_{1}=1,74$ and stream velocity at total range equal to $0,2 \mathrm{~m} / \mathrm{s}$, we determine the factor $S_{2}=3,4$. From diagram 6.3 , for factor $S_{2}=3,4$ and the curve for collision distance equal to $A_{s}=1 \mathrm{~m}$, we determine the factor $S_{3}=3,4$. Finally, from diagram 6.4 for factor $S_{3}=3,4$ and the curve for collision between streams, we determine that the stream vertical drop Y_{0} is equal to $3,4 \mathrm{~m}$. The total range is calculated by the equation $X_{0}=A_{s}+Y_{0}=1+3,4$ $=4,4 \mathrm{~m}$.

www.airtechnic.gr

RANGE CALCULATION - A2

Selection example 3 :
Which is the total range, per direction, of a diffuser A2 with dimensions 230×230, if the air flow is $200 \mathrm{~m}^{3} / \mathrm{h}$, we have collision between the stream of the diffuser and the wall located 1 m away from the diffuser and the stream velocity at total range is $0,2 \mathrm{~m} / \mathrm{s}$?

From the surface factor Af selection table (page 5) we establish that, for a diffuser with dimensions $\mathbf{2 3 0} \mathbf{x} \mathbf{2 3 0}$, the surface factor Af is equal to 52,9 . Therefore, from diagram 7.1, for air flow of $200 \mathrm{~m}^{3} / \mathrm{h}$ and surface factor 52,9 , we determine the factor $\mathrm{S}_{1}=0,89$. We continue to diagram 7.2 , where, for factor $S_{1}=0,89$ and stream velocity at total range equal to $0,2 \mathrm{~m} / \mathrm{s}$, we determine the factor $S_{2}=1,86$. From diagram 7.3 , for factor $S_{2}=1,86$ and the curve for collision distance equal to $A_{s}=1 \mathrm{~m}$, we determine the factor $S_{3}=1,86$. Finally, from diagram 7.4 for factor $S_{3}=1,86$ and the curve for collision between the stream of the diffuser and the wall, we determine that the stream vertical drop Y_{0} is equal to $3,02 \mathrm{~m}$. The total range per direction is calculated by the equation $X_{o}=A_{s}+Y_{0}=1+3,02=4,02 \mathrm{~m}$.

RANGE CALCULATION - A3 / TRIANGULAR SURFACE

Selection example 4 :
Which is the total range of the stream discharged from the triangular surface af a diffuser A3 with dimensions 300×230 if the total air flow is $300 \mathrm{~m}^{3} / \mathrm{h}$, we have collision between the air stream of this diffuser and the air stream of another's, at a distance of 1 m from each diffuser and the stream velocity at total range is $0,2 \mathrm{~m} / \mathrm{s}$?

From the surface factor Af selection table (page 5) we establish that, for a diffuser with dimensions $\mathbf{3 0 0} \mathbf{x} \mathbf{2 3 0}$ the surface factor Af is equal to 69 . From diagram 8.1 for air flow of $300 \mathrm{~m}^{3} / \mathrm{h}$ and surface factor 69 , we determine the factor $S_{1}=0,83$. We continue to diagram 8.2 , where, for factor $S_{1}=0,83$ and stream velocity at total range equal to $0,2 \mathrm{~m} / \mathrm{s}$, we determine the factor $S_{2}=1,75$. From diagram 8.3 , for factor $S_{2}=1,75$ and the curve for collision distance equal to $A_{S}=1 \mathrm{~m}$, we determine the factor $S_{3}=1,74$. Finally, from diagram 8.4 for factor $S_{3}=1,74$ and the curve for collision between streams, we determine that the stream vertical drop Y_{0} is equal to $1,75 \mathrm{~m}$. The total range is calculated by the equation $X_{o}=A_{s}+Y_{0}=1+1,75=2,75 \mathrm{~m}$.

RANGE CALCULATION - A3 / TRAPEZOIDAL SURFACE

Selection example 5 :
Which is the total range of the stream discharged from the trapezoidal surface af a diffuser A3 with dimensions 300×230, of selection example 4 on page 11, if we have collision between the air stream of the diffuser and a wall located 1 m away from the diffuser and the stream velocity at total range is $0,2 \mathrm{~m} / \mathrm{s}$?

From diagram 9.1 for total air flow of $300 \mathrm{~m}^{3} / \mathrm{h}$ and surface factor equal to 69 , we determine the factor $\mathrm{S}_{1}=1$. We continue to diagram 9.2 , where, for factor $S_{1}=1$ and stream velocity at total range equal to $0,2 \mathrm{~m} / \mathrm{s}$, we determine the factor $S_{2}=2,01$. From diagram 9.3 , for factor $S_{2}=2,01$ and the curve for collision distance equal to $A_{s}=1 \mathrm{~m}$, we determine the factor $S_{3}=2,01$. Finally, from diagram 9.4 for factor $S_{3}=2,01$ and the curve for collision between the stream and the wall, we determine that the stream vertical drop Y to is equal to $3,4 \mathrm{~m}$. The total range of the stream discharged from each trapezoidal surface is calculated by the equation $X_{o}=A_{s}+Y_{0}=1+3,4=4,4 \mathrm{~m}$.

A1 - A4 - ORDER

For the proper order of ceiling diffusers A1 \div A4 please use the following code :

Examples

A2 300×300 + E | $9010=$

Ceiling diffuser A2 (air supply into 2 directions) $\mathbf{3 0 0} \mathbf{m m}$ in length and height, with blades and frame from aluminium, powder painted in RAL 9010 and equalizing grid.

A3 $\mathbf{3 8 0} \times \mathbf{4 5 0}$ + $\mathbf{D}=$

Ceiling diffuser A3 (air supply into 3 directions), $\mathbf{3 8 0} \mathbf{~ m m}$ in length, 450 mm in height, with blades and frame from anodized aluminium and volume damper.

A4 $\mathbf{3 8 0} \times \mathbf{4 5 0} \mathbf{~ + ~ E ~ + ~ D ~ = ~}$

Ceiling diffuser A4 (air supply into 4 directions), $\mathbf{3 8 0} \mathbf{~ m m}$ in length, $\mathbf{4 5 0} \mathbf{~ m m}$ in height, with blades and frame from anodized aluminium, with equalizing grid and volume damper.

SPECIFICATION

Ceiling diffuser, 1 / 2 / 3 / 4 directions, A1 / A2 / A3 / A4

Ceiling diffuser, indicative type A1 / A2 / A3 / A4 of AIRTECHNIC, manufactured of anodized aluminum / aluminum painted in RAL... color, with fixed blades configured for air supply into 1 direction (A1) / 2 directions (A2) / 3 directions (A3) / 4 directions (A4). The manufacturer will have performed measurements of the technical characteristics of the diffuser, in an independent laboratory according to the standard ELOT EN 12238: 2002. It will have a volume damper [D] / equalizing grid [E]. It will be suitable for ceiling or air duct placement, for air supply and visible installation with screws / concealed placement with internal screws, on the side of the diffuser. It will be possible to be manufactured as accessible ceiling diffuser with removable blade core. The factory will be certified according to ISO 9001:2015 (Quality Management Systems) and according to ISO 14001:2015 (Environmental Management Systems).
It will be manufactured by AIRTECHNIC type A1 / A1 +D, +E.
It will be manufactured by AIRTECHNIC type A2 / A2 +D, +E.
It will be manufactured by AIRTECHNIC type A3 / A3 +D, +E.
It will be manufactured by AIRTECHNIC type A4 / A4 +D, +E.

Air－Conditioning \＆Ventilation Components \＆Systems

为

FANS \＆FAN SECTIONS

本
STEAM HUMIDIFIERS－DEHUMIDIFIERS

Main Office ATHENS
－Michail Karaoli Str．19，
14343，Nea Chalkidona，Athens 211－705．55．00
msales＠airtechnic．gr

CENTRAL VACUUM SYSTEMS

Factory－THIVA
－ $4^{\text {th }} \mathrm{km}$ Thiva－Chalkida Hwy， 32200，Thiva
22620－89．006
－factory＠airtechnic．gr

＊

＊

业

Factory－THESSALONIKI
P End of Meandrou Str．，
57013，Oraiokastro，Thessaloniki
2311－82．40．00
m thessaloniki＠airtechnic．gr

